01
中国剩余定理,又称中国余数定理,是数论中的一个关于一元线性同余方程组的定理,说明了一元线性同余方程组有解的准则以及求解方法。也称为孙子定理,古有“韩信点兵”、“孙子定理”、“求一术”(宋沈括)、“鬼谷算”(宋周密)、“隔墙算”(宋 周密)、“剪管术”(宋杨辉)、“秦王暗点兵”、“物不知数”之名。
中国剩余定理的别称是中国余数定理,一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》对“物不知数”问题做出了完整系统的解答。明朝数学家程大位在《算法统宗》中将解法编成易于上口的《孙子歌诀》:三人同行七十希,五树梅花廿一支,七子团圆正半月,除百零五便得知。
这个歌诀给出了模数为3、5、7时候的同余方程的秦九韶解法。意思是:将除以3得到的余数乘以70,将除以5得到的余数乘以21,将除以7得到的余数乘以15,全部加起来后再减去105或者105的整数倍,得到的数就是答案(除以105得到的余数则为最小答案)。