01
体积是刻画立体大小的量,梯形是平面图形没有体积,只有面积;梯形的面积公式(上底+下底)×高÷2,用字母表示为S=(a+b)×h÷2;另一计算梯形的面积公式为中位线×高,用字母表示为L·h。
梯形(trapezoid)是只有一组对边平行的四边形。平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形(right trapezoid)。两腰相等的梯形叫等腰梯形(isosceles trapezoid)。
梯形性质:
1、梯形的上下两底平行;
2、梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
3、等腰梯形对角线相等。
梯形判定
1、一组对边平行,另一组对边不平行的四边形是梯形。
2、一组对边平行且不相等的四边形是梯形。
梯形是平面图形没有体积,只有面积;梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h÷2;变形1:h=2s÷(a+b);变形2:a=2s÷h-b;变形3:b=2s÷h-a。另一计算梯形的面积公式:中位线×高,用字母表示:L·h。对角线互相垂直的梯形面积为:对角线×对角线÷2。字母公式:(A+B)乘H除2。